Definition: Opposite Rays:
Opposite rays are rays that lie on the same line and intersect in just one point.

Definition: Opposite Rays:
Opposite rays are rays that lie on the same line and intersect in just one point.

## Definition: Opposite Rays: Opposite rays are rays that lie on the same line and intersect in just one point.



## Definition: Opposite Rays: Opposite rays are rays that lie on the same line and intersect in just one point.



Definition: Opposite Rays: Opposite rays are rays that lie on the same line and intersect in just one point.


Definition: Opposite Rays: Opposite rays are rays that lie on the same line and intersect in just one point.

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AZ}}$ are opposite rays.

Definition: Opposite Rays:
Opposite rays are rays that lie on the same line and intersect in just one point.

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AZ}}$ are opposite rays. $\overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{AZ}}=\mathrm{A}$

Definition: Opposite Rays: Opposite rays are rays that lie on the same line and intersect in just one point.

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AZ}}$ are opposite rays.

$$
\overrightarrow{\mathrm{AB}} \cap \overrightarrow{\mathrm{AZ}}=\mathrm{A}
$$

$$
\overrightarrow{\mathrm{AB}} \cup \overrightarrow{\mathrm{AZ}}=\overrightarrow{\mathrm{ZB}}
$$

Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.

# Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other. 



## Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.



## Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.



## Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.



## Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.



> Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.


> Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.


## Theorem 18: Vertical angles are congruent.

Theorem 18: Vertical angles are congruent.
Given: $\begin{aligned} & \text { Lines } l \text { and } m \\ & \text { intersecting at A }\end{aligned}$
$\underset{\text { Proof }}{ } \stackrel{\text { Prove: }}{ } \angle 1 \cong \angle 3$


| Statement | Reason |
| :--- | :--- |
| 1. | 1. |
| 2. | 2. |
| 3. | 3. |
| 4. | 4. |

Theorem 18: Vertical angles are congruent.
Given: $\begin{aligned} & \text { Lines } l \text { and } m \\ & \text { intersecting at A }\end{aligned}$
$\underset{\text { Proof }}{ } \quad$ Prove: $\angle 1 \cong \angle 3$


| Statement | Reason |
| :--- | :--- |
| 1. Lines $l$ and $m$ <br> intersect at A | 1. Given |
| 2. | 2. |
| 3. | 3. |
| 4. | 4. |

Theorem 18: Vertical angles are congruent.
Given: $\begin{aligned} & \text { Lines } l \text { and } m \\ & \text { intersecting at A }\end{aligned}$
$\underset{\text { Proof }}{ } \quad$ Prove: $\angle 1 \cong \angle 3$


| Statement | Reason |
| :--- | :--- |
| 1. Lines $l$ and $m$ <br> intersect at A | 1. Given |
| 2. $\angle 1$ is supp. to $\angle 2$ | 2. linear pair |
| 3. | 3. |
| 4. | 4. |

Theorem 18: Vertical angles are congruent.
Given: $\begin{aligned} & \text { Lines } l \text { and } m \\ & \text { intersecting at A }\end{aligned}$
$\underset{\text { Proof }}{ } \quad$ Prove: $\angle 1 \cong \angle 3$


Statement
Reason

1. Lines $l$ and $m$
2. Given intersect at A
3. $\angle 1$ is supp. to $\angle 2$
4. $\angle 3$ is supp. to $\angle 2$ 4.
5. linear pair
6. linear pair 4.

Theorem 18: Vertical angles are congruent.
Given: $\begin{aligned} & \text { Lines } l \text { and } m \\ & \text { intersecting at A }\end{aligned}$
$\underset{\text { Proof }}{ } \quad$ Prove: $\angle 1 \cong \angle 3$


Statement
Reason

1. Lines $l$ and $m$
2. Given intersect at A
3. $\angle 1$ is supp. to $\angle 2$
4. $\angle 3$ is supp. to $\angle 2$
5. $\angle 1 \cong \angle 3$
6. linear pair
7. linear pair
8. $\angle$ 's supp. to same $\angle$ are $\cong$


$m \angle 1=m \angle 3=60^{\circ}$

$$
m \angle 1=m \angle 3=60^{\circ}
$$








# Definition: Opposite Rays: Opposite rays are rays that lie on the same line and intersect in just one point. 

Definition: Opposite Rays:
Opposite rays are rays that lie on the same line and intersect in just one point.

Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.

Definition: Opposite Rays:
Opposite rays are rays that lie on the same line and intersect in just one point.

Definition: Vertical angles: Vertical angles are two angles such that the sides of one angle are opposite rays to the sides of the other.

## Theorem 18: Vertical angles are congruent.

